
Cheat sheet

Git
Git is a version control system (also called a source control system) that allows programmers and other people
working with text files to coordinate changes while working independently. Git also supports binary assets such as
pictures, but those formats don’t support the line-by-line version management that makes version control really
powerful.

redhat-developer @rhdevelopersdevelopers.redhat.com

Git concepts and workflow

Each user of Git maintains a separate repository (or multiple repositories) for working with the source code. The
repository where the project was launched is considered the source of truth. Other users sync up with this remote
repository, which can be hosted on a private network or by a public service provider such as GitHub, GitLab, or
BitBucket.

There are formal processes for moving content to and from the remote repository. Each change goes through four
phases before finally being stored in the remote repository. Each of these four phases has an associated location in
which code is stored. These locations are:

- Working directory
- Staging environment
- Local repository
- Remote

The sections that follow describe the purpose and use of each location.

Working directory

The working directory is the location of the code in the local computer’s file system. Developers add and make
changes to code in the working directory.

Staging environment

The staging environment is an area that is special to Git, and does not appear in many other version control systems.
Developers use the git add and get reset commands to add files to and remove files from the staging environment.
You can think of staging as a temporary area where files are stored before being committed to the local repository.

git add git reset

Local repository

The local repository is the instance of the Git repository stored on the local computer, physically represented by a
subdirectory named .git (the initial period makes it hidden) under the top-level directory. The .git directory contains
metadata and other information needed by Git to manage the project. Once content has been added to the staging
environment, developers use the git commit command to store new and updated content to the local repository.

The git pull command updates the local repository from the remote repository, bringing the local directory in sync
with what other developers have done.

.git.git

git commit

git pull

Branches

Content in the remote repository can be broken into different paths of development through the concept of
branches. The root branch is typically named main.main

Remote repository

The remote repository is the Git repository on the network that is the single source of truth for all content being
managed under a particular project. Developers use the git push command to upload content from the local
repository to a remote repository.

The following figure shows the working directory, staging environment, local repository, and remote repository
locations along with the git commands that move data to and from each location. After content has been pulled from
a remote repository to a local repository, that content is available in the local file system.

git

git push

Working with repositories

The following sections describe git commands that create a local repository, download (clone) a remote repository to
a local machine, and update a local repository with changes from a remote repository.

git

redhat-developer @rhdevelopersdevelopers.redhat.com

git init

Creates a local repository that will be represented by the directory named .git . This command is not needed when
working in a remote repository. Use git clone to start work with other repositories.

If the optional <repo_directory> parameter is not provided, the .git file is created in the current directory. If the
parameter <repo_directory> is provided, that directory is created and the .git directory is created in that directory.

.git

.git

.git

git clone

<repo_directory>

<repo_directory>

git [options] init <repo_directory>

$ git init ./coolcode
Initialized empty Git repository in /home/lennonjohn/coolcode/.git/

The following example uses the git init command to create a local repository in the /home directory of the user
lennonjohn. The example creates the directory coolcode as the repository directory in which the repository .git file is
stored:

git init

lennonjohn coolcode .git

/home

Example:

Note: The $ in the examples is the command prompt.$

redhat-developer @rhdevelopersdevelopers.redhat.com

git clone

Downloads content from a remote repository for local operations. If the parameter <target_directory> is provided,
the repository contents are downloaded into that directory. (That directory must be empty.) Otherwise, git creates a
directory based on the remote repository name.

<target_directory>

git

git clone [options] <remote_repo_url> <target_directory>

git clone https://github.com/redhat-developer/developers.redhat.com.git ./
rh

The following example uses the command git clone to download the content of the remote repository found at
https://github.com/redhat-developer/developers.redhat.com into the local directory ./rh.

git clone

./rh

Example:

git pull

When called within a local repository, downloads the latest, current assets from the associated remote repository.

git pull [options]

$ git pull
Already up to date.

The following example uses git pull to download files from the associated remote repository. Because contents in the
remote repository and local repository are the same, the command responds with a message Already up to date.

git pull

Already up to date

Example:

$ git fetch

The following example uses the git fetch command to downloaded updated assets from the corresponding remote
repository, but will not merge the deltas in the branches on the local repository.

Example:

git fetch

git fetch

Downloads code and assets from the remote repository to the local machine without overwriting the existing local
code and assets in the current branch. If the optional <repository> is not provided, git fetch is executed against the
Git repository associated with the present working directory.

<repository> git fetch

git fetch [options] <repository>

$ git log --oneline
80f6259 (HEAD -> main) adding newfile.txt to main
665ecf1 (origin/your-feature, origin/main, origin/dev, origin/HEAD)
reorganizing repo structure
c9b791c reorganizing repo structure
af0f400 Update eapxp-quickstarts.yaml
28d8577 Update README.md
f8be8a1 Update README.md
456b537 Update README.md
415ce57 Update eapxp-quickstarts.yaml
70233e6 Update README.md
9263b26 Update README.md
886f7c1 Update README.md
3a0f42d Update README.md
1768b69 Example YAML: Develop MicroProfile app on JBoss EAP 7.3
10b9670 Added directions on how to create an asset inventory in the README
41e85e1 Initial commit

The following example uses git log with the --oneline option to show all activities in the repository in an abbreviated
format:

git log --oneline

Example:

git log

Displays the Git log file that contains a history of all transactions in the repository.

git log [options]

redhat-developer @rhdevelopersdevelopers.redhat.com

Working with branches

The following sections describe the various git branch command expressions you can use to work with branches in a
repository.

git branch

redhat-developer @rhdevelopersdevelopers.redhat.com

$ git branch
 dev
 main
* my_feature

The following example reports the current branch that is being worked within in the local repository. In this case the
current branch is my_feature and is indicated by the asterisk before the branch name:

Example:

my_feature

Getting the current branch name

Shows all branches in the local repository, flagging the current branch that is checked out from the local repository.

git branch

$ git branch -r
 origin/HEAD -> origin/main
 origin/main
 origin/my_feature
 origin/your-feature

Example:

The following example uses the git branch command along with the -r option to display the names of all branches on
the remote repository:

git branch

Displays all the branches in the remote repository.

Viewing remote branches

git branch -r

Displays all branches both on the local and remote repositories.

Viewing all branches

git branch -a

$ git branch -a
 dev
 main
* my_feature
 remotes/origin/HEAD -> origin/main
 remotes/origin/main
 remotes/origin/my_feature
 remotes/origin/your-feature

Example:

The following example displays all branches, local and remote, for the repository associated with the current working
directory. The * symbol indicates the current working branch, in this case my_feature:my_feature*

redhat-developer @rhdevelopersdevelopers.redhat.com

$ git branch dev main

Example:

The following example creates the a branch named dev that has the directories and files from the existing branch
named main:

dev

main

Creates a new branch. If the optional parameter <existing_branch_name> is not provided, the new branch is derived
from the current working branch.

<existing_branch_name>

Creating a branch in the local repository

git branch <new_branch_name> <existing_branch_name>

$ git checkout dev
Switched to branch 'dev'

$ git branch
* dev
 main
 my_feature

Example:

The following example changes the current working branch to the branch named dev. The checkout command is
followed by a git branch command to verify the branch change. The * symbol indicates the current working branch, in
this case dev.dev

dev checkout

git branch *

Retrieves the files in the branch named <branch_name> in the local repository. Once git checkout is called,
developers can work on the files in that branch.

<branch_name> git checkout

Changing branches

git checkout <branch_name>

Working with content

The following sections describe the various git commands you can use to inspect and manage files in a local
repository.

git

redhat-developer @rhdevelopersdevelopers.redhat.com

$ git status
On branch dev
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)

modified: git_cheat_sheet/readme.md

no changes added to commit (use "git add" and/or "git commit -a")

Example:

The following example uses git status to report the status of the file and directories in the present working directory,
in comparison to the state of the local repository. The final line of output shows that the local repository is currently in
sync with the working directory:

git status

Reports the status of the current filesystem associated with the local repository. The <directory_or_filename>
parameter is optional. If no directory or filename is provided, the status of the present working directory is reported.

<directory_or_filename>

Determining the status of the local filesystem

git status [options] <directory_or_filename>

$ mkdir git_cheat_sheet
$ touch ./git_cheat_sheet/readme.md
$ git add ./git_cheat_sheet/

Example:

The following example creates a directory named git_cheat_sheet in the current branch. Then a file named
readme.md is added to the directory. Finally, the git add command adds the contents of the directory to the local
staging environment:

 git_cheat_sheet

readme.md

Adds content to the staging environment from the current branch in the local computer’s working directory.

Adding new or updated content to staging

git add [options] <files or directories>

$ git commit -m "adding new file for git-cheat-sheet" ./git_cheat_sheet/
readme.md
[dev 0c0fb31] adding content for git-cheat-sheet
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 git_cheat_sheet/readme.md

Example:

The following example uses the git commit command to commit the file ./git_cheat_sheet/readme.md to the local
repository along with a descriptive message: "adding new file for git-cheat-sheet":

git commit ./git_cheat_sheet/readme.md

Commits content from the staging environment to the local repository.

Committing new or updated content to the local repository

git commit [options] <files or directories>

redhat-developer @rhdevelopersdevelopers.redhat.com

git push

Example:

The following example uploads all content committed to the local repository to the default remote repository
associated with the current working directory:

Uploads content from the local repository to the remote repository. The <remote_repository> parameter is optional.
If no remote repository is defined, content is pushed to the repository associated with the current working directory.
If the remote repository has updates that are not reflected in the local repository, the push command fails with an
error message.

<remote_repository>

push

Pushing new or updated content to the remote repository

git push [options] <remote_repository>

Example:

The following example uses git add to add a file named config.json to the staging environment, and then uses git
status to inspect the state of the file, which is now awaiting a commit.

Then the command git restore is used with the --staged option to remove the config.json file from the staging
environment. The git status command is called again to reveal that the file config.json is no longer part of the staging
environment:

config.jsongit add

git restore

git status

--staged config.json

config.json

git

Rolls back a file to its previous state under version control.

Rolling a file back from the staging environment

git restore [options] <filename>

status

$ git add config.json

$ git status
On branch dev
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)

$ git restore --staged config.json

$ git status
On branch dev
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)

modified: config.json

no changes added to commit (use "git add" and/or "git commit -a")

redhat-developer @rhdevelopersdevelopers.redhat.com

Example:

The following example displays the files in the working directory associated with a local repository. Then a new file
named config.json is added to the directory. Finally the command git clean is called with the -f option to reset the
directory to the local repository’s original state, removing the added file. The ls -1 command is called again to show
that the file config.json has been removed from the working directory:

config.json

config.json

-f

ls -1

git clean

Rolls one or more files back to a particular state according to particular context with the repository–local or remote.
For example, rolling back to the last commit.

Removing files that were added but not staged

git clean [options] <filename>git clean [options] <filename>

$ ls -1
readme.md

$ echo "{"isCool": 1}" > config.json

$ ls -1
config.json
readme.md

$ git clean -f
Removing config.json

$ ls -1
readme.md

Rolling back to the most recent commit

git revert [options] <commit_uuid>

Example:

The following example displays the files in the directory associated with a local repository. Then a new file named
newfile.txt is added to the directory and committed to the local repository. The contents of the directory are listed
again. The git log command shows the latest Git activity.

Then git revert 98d7128 --no-edit reverts the state of the directory to the point before the commit 98d7128 was
executed. The contents of the reverted directory are displayed. The reversion activity has been captured and is
displayed by calling git log:git log

newfile.txt

git log

 git revert 98d7128 --no-edit 98d7128

Reverts the filesystem associated with a local .git repository to a previous state. Also updates changes to the local git
log.

.git .git

redhat-developer @rhdevelopersdevelopers.redhat.com

$ ls -1
config.json
readme.md

$ touch newfile.txt
$ git add .
$ git commit -m "adding a file named newfile.txt"

$ ls -1
config.json
newfile.txt
readme.md

$ git log --oneline
98d7128 (HEAD -> main) adding a file named newfile.txt
e5cf841 adding configuration file
665ecf1 (origin/your-feature, origin/main, origin/dev, origin/HEAD)
reorganizing repo structure

$ git revert 98d7128 --no-edit
Removing newfile.txt
[main 3f10573] Revert "adding a file named newfile.txt"
 Date: Tue Feb 15 09:13:06 2022 -0800
 1 file changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 newfile.txt

$ ls
config.json
readme.md

$ git log --oneline
3f10573 (HEAD -> main) Revert "adding a file named newfile.txt"
98d7128 adding a file named newfile.txt
e5cf841 adding configuration file
665ecf1 (origin/your-feature, origin/main, origin/dev, origin/HEAD)
reorganizing repo structure

Rolling back to the most recent commit

The following sections describe how to merge files between branches, rebase files between branches, and invoke the
a diff tool when merge conflicts occur.diff

Example:

The following example shows the current branch as well as the files in that branch. The dev branch has two files,
newfile.txt and readme.md.

Then the branch is changed to main. The main branch has one file, readme.md. The command git merge dev --no-
merges the files from the dev branch into the the current main branch. The option --no-edit is used to avoid having
to write a message describing the merge. Finally, the ls -1 command shows that the merge successfully added
newfile.txt from the dev branch to main:

newfile.txt

newfile.txt

readme.md

main

ls -1

main --no-edit

readme.md git merge dev --no-edit

Merges the files and directories from <branch_to_merge_from> into the <target_branch>. If the <target_branch>
parameter is not provided, the files and directories in the <branch_to_merge_from> are merged into the current
branch.

<branch_to_merge_from>

<branch_to_merge_from>

<target_branch> <target_branch>

git merge

git clean [options] <filename>git merge [options] <target_branch> <branch_to_merge_from>

redhat-developer @rhdevelopersdevelopers.redhat.com

Example:

The following example checks out the branch dev and then rebases the updates made in the branch new_feature
onto the branch dev. The commits that were part of new_feature are now part of dev:

dev

dev dev

new_feature

new_feature

Merges one repository onto another while also transferring the commits from the merge-from branch onto the
merge-to branch. Operationally, Git can delete commits from one branch while adding them to another.

git rebase

git clean [options] <filename>git rebase [options] <other_branch>

$ git branch
* dev
 main

$ ls -1
newfile.txt
readme.md

$ git checkout main

$ ls -1
readme.md

$ git merge dev --no-edit
Merge made by the 'recursive' strategy.
 newfile.txt | 0
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 newfile.txt

$ ls -1
newfile.txt
readme.md

$ git checkout dev
Switched to branch 'dev'

$ git rebase new_feature
Successfully rebased and updated refs/heads/dev.

redhat-developer @rhdevelopersdevelopers.redhat.com

Example:

The following example creates a merge conflict and then invokes mergetool using the --tool option to run merge
editor vimdiff.

Note:: The vimdiff tool has to be installed on the computer prior to using it with mergetool. The output that follows is
an emulation of the command-line interface for vimdiff.

--tool

vimdiff

vimdiff

vimdiff

mergetool

Invokes an editing tool to resolve merge conflicts between files. If no <tool> parameter is provided, mergetool uses
the globally configured merge editor. You can register a merge editor using the following command:

<tool> mergetool

git mergetool

git clean [options] <filename>git mergetool <tool>

git config --global merge.tool vimdiff

In this case, the command indicates that vimdiff should be used by default to show diffs between branches.

You also use an alterative merge editor by using the --tool option.

vimdiff

--tool

$ git merge dev
Auto-merging newfile.txt
CONFLICT (content): Merge conflict in newfile.txt
Automatic merge failed; fix conflicts and then commit the result

$ git mergetool --tool=vimdiff

Hit return to start merge resolution tool (vimdiff):
+---+
| MAIN | BASE | DEV |
+-----------------|--------------|--------------------+
I am cool	<<<<<<< HEAD	He was cool
	I am cool	
	=======	
	I was cool	
	>>>>>>> dev	
+---+

Rolling back to the most recent commit

The following sections show some ways to keep track of changes in Git.

Example:

The following example uses git blame to list recent commits on the file readme.md. Note that commit 2a86f76f (the
third line in the output) was the most recent change, because its timestamp 2022-02-16 08:41:07 is the most recent:

git blame readme.md 2a86f76f

2022-02-16 08:41:07

$ git blame readme.md
c9b791ce (John Lennon 2022-02-08 11:00:30 -0800 1) # RHEL 8 Cheat Sheet:
Additional Resources
c9b791ce (John Lennon 2022-02-08 11:00:30 -0800 2)
2a86f76f (Mick Jagger 2022-02-16 08:41:07 -0800 3) Contains a list of
additional resources.
4dfb6c37 (Mick Jagger 2022-02-16 08:32:12 -0800 4)
4dfb6c37 (Mick Jagger 2022-02-16 08:32:12 -0800 5) It is still a work in
progress.
4dfb6c37 (Mick Jagger 2022-02-16 08:32:12 -0800 6)

Displays a list of recent commits on a file by committer along with changes in the file. By default each list item displays
the commit UUID, the committer, the date of commit, the locale, and the actual content added.

git blame

git clean [options] <filename>git blame [options] <file_of_interest>

redhat-developer @rhdevelopersdevelopers.redhat.com

Example:

The following example uses git tag to declare a tag with the value v1.0. The option -m is used to apply a message to
the tag:

v1.0 -m

$ git tag v1.0 -m "first release of project"

The following example uses git tag to display a list of existing tags on the repository. The -n option is used to show the
user-defined message associated with each tag:

git tag -n

$ git tag -n
v1.0 first release of project

Tags a repository. This command is usually used to mark a release. If the <tag_name> parameter is not provided, the
command displays a list of existing tags.

<tag_name>

git tag

git clean [options] <filename>git tag [options] <tag_name>

